

Apfelsaftaromen und ihre Bedeutung für die Sensorik

Dr. Martin Pour Nikfardjam Staatliche Lehr- und Versuchsanstalt für Wein- und Obstbau Weinsberg

Inhalt des Vortrags

- Apfelsaftaroma
- Untersuchungen
- Ergebnisse
- Diskussion
- Fazit
- Empfehlungen für die Praxis

Vorkommen & Bedeutung

- Apfelsaftaroma entsteht erst während der Verarbeitung
- typische Vorstufen f
 ür Aromastoffe
 - Fettsäuren → C₆-Körper ("grün")
 - Aminosäuren
 - Zucker
 - Fettsäure + Alkohol → Ester ("fruchtig")
- Einflüsse: Sorte, Reifegrad, Verarbeitung

typische Apfelsaftaromen

Aromastoff	Geruch
<i>E</i> -2-Hexenal	grüner Apfel (Granny Smith)
<i>E</i> -2-Hexenol	grün, Walnuss

typische Apfelsaftaromen

Aromastoff	Geruch
<i>E</i> -2-Hexenal	grüner Apfel (Granny Smith)
<i>E</i> -2-Hexenol	grün, Walnuss
Ethyl-2-methylbutanoat	fruchtig, reif
Ethylbutanoat	fruchtig, Ester
1-Butanol	süß, malzig
1-Hexanol	fruchtig, fettig
Butylacetat	ätherisch
β-Damascenon	Bratapfel

Grund für Untersuchungen

- 2mal jährlich Qualitätszeichen Baden-Württemberg
- chemische & sensorische Beurteilung von Apfel- und Birnensäften sowie –mosten
- auffällige Proben hinsichtlich Aromatik
 - überaromatisiert,
 - künstlich,
 - Apfel-Shampoo,
 - grün

typischer Apfelsaft?

Untersuchung

- 85 Apfelsäfte aus QZ-BW-Prüfung und Handel (LEH, Discounter)
- 67 Direktsäfte, 18 Konzentratsäfte
- 26 Aromastoffe mittels GC/MS
- statistische Auswertung der Daten
 - Korrelationen zwischen sensorischer Bewertung und Aromastoffgehalten

		Minimum	Maxim um	1. Quartil	Median	3. Quartil		
		26.690	913.803	62.873	107.973	163.380		
		1.262	11.517	3.901	4.874			
			10.698	1.089	2.667			

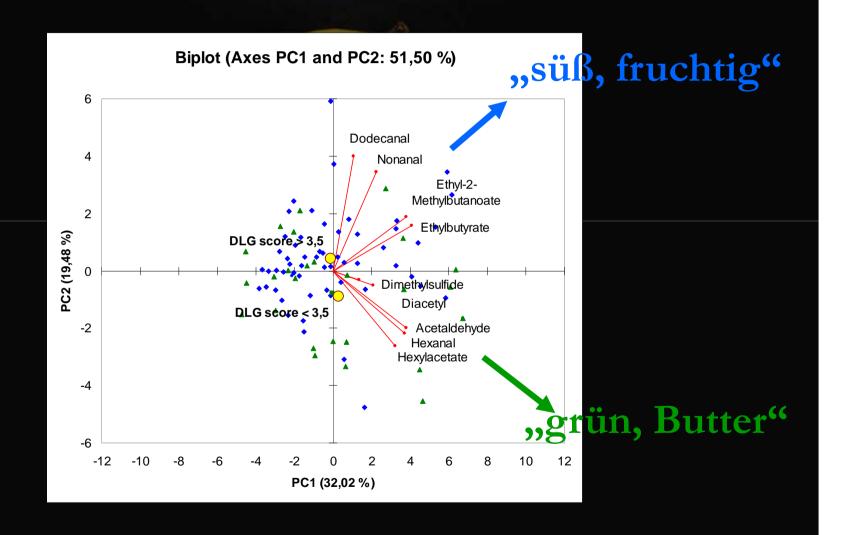
Nicht hohe Konzentration entscheidend!

Aromawert

- Maß für die Wichtigkeit eines Stoffes in einem komplexen Aroma
- errechnet aus:

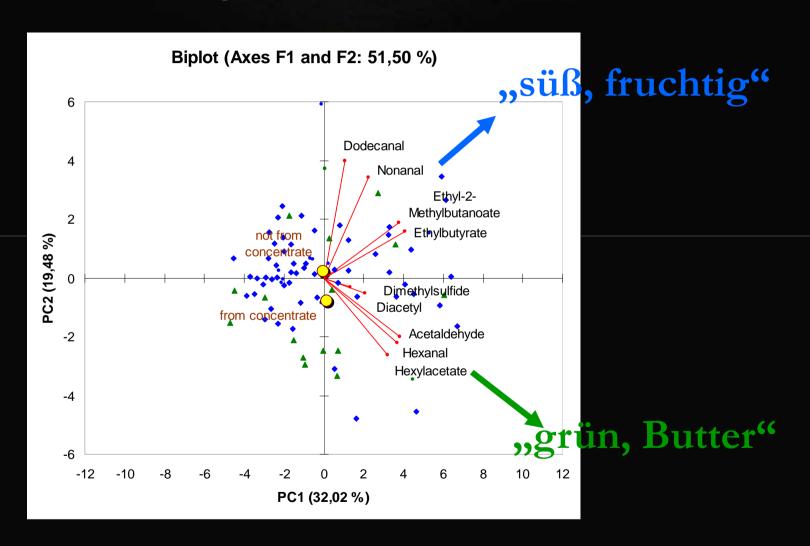
$$Aromawert = \frac{Median}{Geruchsschwellenwert}$$

• je höher Aromawert, umso wichtiger der Aromastoff


Wichtige Aromastoffe

	Maximum	1. Quartil	Median	3. Quartil	Mittelwert	
	195	42	56	82	67	
	10.698	1.089	2.667	4.328	3.183	
				119		

positive wie negative Aromen gleichermaßen wichtig



Aromen & DLG-Punktzahl

Direkt-/Konzentratsaft

Aromen & Produkt (–bewertung)

süß, fruchtig

grün, buttrig

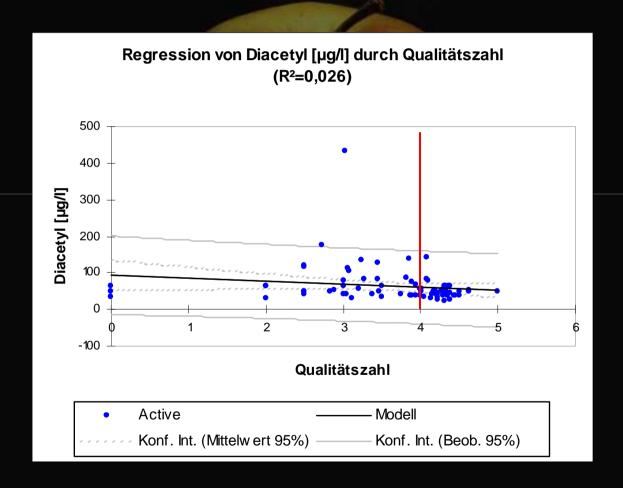
Aromen	& Prod	ııkt (_h	ewerti	ing)
THUIICH	C I I U U			1115)

süß, fruchtig	grün, buttrig

Direktsaft Konzentratsaft

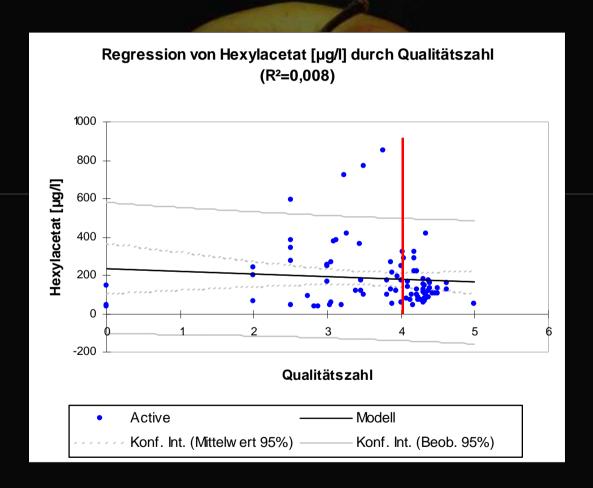
Aromen & Pro	odukt (–	bewertung)
--------------	----------	------------

süß, fruchtig	grün, buttrig
Direktsaft	Konzentratsaft
QZ > 3.5	QZ < 3.5



Aromen & Pro	odukt (–	bewertung)
--------------	----------	------------

süß, fruchtig	grün, buttrig
Direktsaft	Konzentratsaft
QZ > 3.5	QZ < 3.5
QZ-BW	LEH/Discounter



Korrelation Sensorik/Aroma

Korrelation Sensorik/Aroma

guter/schlechter Saft

Qualitätszahl	5	3,23		
Ethanol [µg/l]	71.770	176.867		
Acetaldehyd [µg/l]	1.766	7.739		
1-Butanol [µg/l]	2.895	10.051	3,5	
2-Methyl-1-Butanol [μg/l]	1.038	2.155	2,1	
E-2-Hexenal [µg/l]	755	876	1,2	
Hexanol [µg/l]	637	4.289	6,7	
	214	344	1,6	
Diacetyl [µg/l]	49	136		
Ethylacetat [µg/l]	213	2.229		
Propylacetat [µg/l]	9	126		
	199	444		
Butylacetat [µg/l]	73	1.144		
	45			
2-Methylbutylacetat [µg/l]	63	376		
Hexylacetat [µg/l]	52	722		
	42	67		
Dodecanal [µg/l]	0	118		

- in guten Säften positive wie negative Aromen generell in niedrigen Gehalten vorhanden
- in schlechten Säften insbesondere negative Aromen in höheren Konzentrationen vorhanden
- Analogie zu Parfüm: dezent besser als viel
- QZ-BW-Säfte werden i.a. als fruchtiger, reifer empfunden
- LEH-Säfte zeigen eher grüne Aromen

Schlussfolgerungen

- Apfelsäfte mit niedrigen Konzentrationen an Aromastoffen generell besser bewertet
- Aromabildung während der Verarbeitung
- zügige Verarbeitung hält positive Aromastoffbildung in Grenzen
- negative (Gärungs-) Aromen werden kaum gebildet
- bei Konzentratsäften oftmals zu starke/einseitige Rearomatisierung

Offene Fragen

- Maischestandzeit und Einfluss auf Aromabildung?
- alte Apfelsorten aromareicher = kürzere Standzeiten notwendig?
- Einfluss von Ascorbinsäure-Gabe?
- Pasteurisation: Temperatur und Dauer?

•

Danksagung

Daniel Maier

Thomas Koppmann

Dr. Günter Röhrig

• Jürgen Belz

• Virginie Rostocki

(Analysendaten)

(Analysendaten)

(Durchführung QZ-BW)

(Durchführung QZ-BW)

(Auswertung Sensorik)

Literatur

- Pour Nikfardjam M., Maier D. "Aromastoffe in Apfelsäften und ihre Bedeutung für die Sensorik", Flüssiges Obst 3, 118-121 (2010)
- Pour Nikfardjam M., Koppmann T. "Apfelsaftaroma: Trüber Saft ist klarem überlegen", Flüssiges Obst <u>12</u>, 510-515 (2010)
- Pour Nikfardjam M., Maier D. "Summenparameter zur Bewertung der Qualität von Apfelsäften mittels Headspace-Trap-Technologie", Deutsche Lebensmittel Rundschau <u>106</u> (Februar), 92-96 (2010)
- Pour Nikfardjam M., Maier D. "Development of a Headspace Trap HRGC/MS method for the assessment of the relevance of certain aroma compounds on the sensorial characteristics of commercial apple juice", Food Chemistry 126, 1926-1933 (2011)

